Regiochemistry of Radical Cyclisations (6-exo/7-endo and 7-exo/8-endo) of \mathbf{N}-(o-Alkenylphenyl)-2,2-dichloroacetamides

Tatsunori Sato, Satoshi Ishida, Hiroyuki Ishibashi and Masazumi Ikeda* Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan

Abstract

N - [o-(Alk-1-enyl) phenyl]-2,2-dichloroacetamides, when treated with 2.2 mol equiv. of $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of a catalytic amount of azoisobutyronitrile, gave quinolin-2(1H)-one (6-exo closure) and/or $2 \mathrm{H}-1$-benzazepin-2-one (7-endo closure) systems. In general, the 6-exo cyclisation is favoured over the 7 -endo closure, unless a large group such as phenyl is present at the 1 -position of the alkene. N - [o-(1-Methylethenyl)phenyl]acetamide congeners underwent a 6-exo closure followed by rearrangement to give 1,5-dihydro-4-methyl-2H-1-benzazepin-2-ones. A similar treatment of N-[o-(prop-2-enyl) phenyl]acetamide derivatives gave 2H-1-benzazepin-2-ones (7-exo) and/or 1 -benzazocin-2(1H)-ones (8-endo).

Recently we reported on the radical cyclisation of N-(prop-2enyl)acetamide derivatives which proceeds in a highly regioselective manner to give five-membered lactams (5-exoclosure). ${ }^{1.2}$ The 5 -exo preference is also observed with the 2-methylprop-2-enyl congener. As an extension of this chemistry, we were then led to examine the regiochemistry of the x-carbamoylmethyl radical cyclisation in the formation of the larger ring. To this end, we chose N-[0 -(alk-1-enyl)phenyl]acetamide 2 (6 -exo/7-endo) and N-[o-(alk-2-enyl)phenyl]acetamide derivatives 17 (7 -exo/8-endo) as suitable models. We report here the results of a study of the radical cyclisation of compounds 2 and 17. In this paper a rearrangement that was encountered with N-[o-(1-methylethenyl)phenyl]acetamide \dagger derivatives is also described.

The radical precursors 2a-h, 3-6 and 17a, b were prepared from the corresponding aniline derivatives $1 a-h$ and 16 by standard methods (see Experimental section).

1a-h
a; $R^{1}=M e, R^{2}=R^{3}=H$
b; $R^{1}=R^{3}=M e, R^{2}=H$
c; $R^{1}=R^{2}=H, R^{3}=M e$
d; $R^{1}=R^{2}=H, R^{3}=\mathrm{CO}_{2} \mathrm{Me}$

3

2a-h
e; $R^{1}=R^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$
$f ; R^{1}=R^{3}=H, R^{2}=M e$
g; $R^{1}=M e, R^{2}=P h, R^{3}=H$
h; $R^{1}=R^{3}=H, R^{2}=P h$

$4 \mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{SMe}$
$5 X=Y=S P h$
$6 \mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{H}$

A mixture of tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)$ (1.1 mol equiv.) and a catalytic amount of azoisobutyronitrile (AIBN) in toluene was added to a boiling solution of the dichloroacetamide $\mathbf{2 a}$ in toluene ($6 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$) during 40 min , and the resulting mixture was refluxed for an additional hour. To eliminate the second chlorine atom from the initially formed cyclised product (this procedure is not necessary for the cyclisation of the monochloroacetamide derivatives), a solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.1 mol equiv.) and AIBN in toluene was added, and the mixture was again heated under reflux for 2 h . Evaporation of the
solvent followed by chromatography on silica gel afforded 3,4-dihydro-1,4-dimethylquinolin- $2(1 H)$-one $7 \mathbf{a}^{3}$ in 49% yield. The same product 7a was also obtained from the bis(phenylthio)acetamide 3 in 50% yield upon treatment with $\mathrm{Bu}_{3} \mathrm{SnH}$ (2.2 mol equiv.) (when 1.1 mol equiv. of $\mathrm{Bu}_{3} \mathrm{SnH}$ was used, the reaction was very slow). Similarly the dichloroacetamides $\mathbf{2 b - d}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ (2.2 mol equiv.) gave the corresponding 3,4-dihydroquinolin- $2(1 \mathrm{H}$)-ones 7 b (79% yield), 7 c (100%) and 7 d (100%). In view of the fact that cyclisation of the N unsubstituted N-(prop-2-enyl)acetamides is an unfavourable process, ${ }^{1,4}$ it is somewhat surprising that the N-unsubstituted acetamides $2 \mathbf{c}$ and $\mathbf{2 d}$ gave the cyclised products $7 \mathbf{c}$, \mathbf{d} in excellent yields. \ddagger The closeness of the radical centre and acceptor may be responsible for this anomaly.
In contrast, similar treatment of 2,2-dichloro- N - $\mathrm{O}-$-(1-methylethenyl)phenyl]acetamide 2 e gave a rearranged product, 1,5-dihydro-1,4-dimethyl-2 H -1-benzazepin- 2 -one 8 (68% yield), the 3,4-dihydroquinolin- $2(1 \mathrm{H})$-one $\mathbf{9}^{3}(24 \%$), and an inseparable mixture of $1,3,4,5$-tetrahydro-1,5-dimethyl- 10 and $1,3,4,5$ -tetrahydro-1,4-dimethyl-2H-1-benzazepin-2-ones 11 (10%; 2:1). The structure 8 was deduced from the spectroscopic and chemical evidence. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}$ revealed a methyl signal at $\delta 1.97$ (d, $J 1.5 \mathrm{~Hz}$), a methylene singlet at $\delta 3.23$, and an olefinic proton signal centred at δ $5.60(1 \mathrm{H}, \mathrm{m})$. Catalytic hydrogenation of compound $\mathbf{8}$ over 10% Pd-carbon in methanol gave compound 11. The structures 10^{6} and 11 were deduced from a comparison of the NMR spectrum of the mixture and the gas-liquid chromatography (GLC) retention time with those of each authentic sample.

The same rearrangement was also observed with the dichloroacetamide 2f, the 2-chloro-2-(methylthio)acetamide 4, and the bis(phenylthio)acetamide 5 , giving the rearranged 2 H -1-benzazepin-2-ones $12(44 \%), 8(48 \%)$ and $8(45 \%)$, respectively, along with other, minor products (see Experimental section). Treatment of the chloroacetamide 6 with $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.1 mol equiv.) gave compound $9(19 \%$), and a mixture of benzazepinones 10 and 11 (24% total yield, 1:1).

One possible mechanism for the formation of the rearranged product 8 would involve a neophyl radical intermediate (B) formed by a 6 -exo closure of the initially formed radical (A). The radical (B) could then attack the phenyl ring activated

[^0]

Table 1 Effect of the substituents at the radical centre on the α carbamoylmethyl radical cyclisation

Entry	Starting material	Products (\%) ${ }^{a}$		
		The 7-exo product	The 8-endo product	Others
1	$17 a^{\text {b }}$	11 (48)		d
2	$17 \mathrm{~b}^{\text {c }}$		21 (47)	17 f (10)
3	$17 c^{\text {c }}$	11 (38)	20 (44)	
4	$17 \mathrm{~d}^{\text {c }}$	18 (58)	22 (36)	
5	$17 \mathrm{e}^{\text {c }}$	19 (23)	23 (63)	

${ }^{a}$ Isolated yield. ${ }^{b}$ The reaction was carried out using $\mathrm{Bu}_{3} \mathrm{SnH}(2.2 \mathrm{~mol}$ equiv.) in refluxing toluene. ${ }^{c}$ The reaction was carried out using $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.1 mol equiv.) in refluxing toluene. ${ }^{d}$ Some unidentified products were formed.
by the o-acylamino group to give the three-membered-ring intermediate (C), which undergoes ring opening followed by
dechlorination to give product 8 (Scheme 1). The formation of compound $\mathbf{1 1}$ is of special interest, since it may result from trapping of the postulated radical intermediate (D) by hydrogen abstraction from $\mathrm{Bu}_{3} \mathrm{SnH}$. A similar process (a neophyl rearrangement) has been postulated in a radical transformation of 2-bromo-4-methoxy-3-(2-methylprop-2-enyloxy)benzaldehyde to 5 -formyl-8-methoxy-3-methylbenzopyran. ${ }^{7}$ Compound $\mathbf{1 0}$ is a 7 -endo cyclisation product of the radical (A).

Our results thus far indicate that the 6 -exo-closure is much favoured over the 7 -endo-closure in cyclisation of the α carbamoylmethyl radicals derived from the N-[0 -(alk-1-enyl)phenyl]acetamides 2a-f and 3-6. However, cyclisation of the 1 -phenyl congener 2 g proceeded exclusively in a 7 -endo manner to give the $2 H$-1-benzazepin- 2 -one $14 a^{8}$ in 83% yield. Similarly, compound $\mathbf{2 h}$ gave $\mathbf{1 4 b}{ }^{9}$ in 43% yield, along with the reduction product $15(33 \%)$. Two explanations for these results are: (i) the presence of the phenyl group at the 1 -position retards the rate of 6 -exo cyclisation due to steric reasons and (ii) the transition states leading to the 7 -endo products are stabilised by resonance with the 1-phenyl group. Probably both the steric and the electronic factors are operating to favour the 7 -endo cyclisation.

We next investigated the behaviour of the N - $[o$-(prop-2enyl)phenyl]acetamide derivatives 17 (7-exo/8-endo). The dichloroacetamide 17a, upon treatment with $\mathrm{Bu}_{3} \mathrm{SnH}(2.2 \mathrm{~mol}$ equiv.), gave only the $2 H$-1-benzazepin-2-one 11 (a 7-exo product) in 49% yield. Interestingly, when the bis(phenylthio)acetamide 17b was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.1 mol equiv.), the 1-benzazocin-2(1H)-one 21 (an 8-endo product) was obtained in 47% yield, together with the reduction product $\mathbf{1 7 f}$ (9%). The structure 21 was confirmed by desulphurisation with Raney nickel to the known 1-benzazocin-2($1 H$)-one $20 .{ }^{10}$ These observations suggest that regiochemistry of the cyclisation of compounds 17 is highly affected by the substituent on the radical centre.

16

17a-f
a; $X=Y=C l$
b; $X=Y=S P h$
c; $X=C I, Y=H$
d; $X=\mathrm{Cl}, Y=\mathrm{Me}$
e; $X=C l, Y=P h$
$f ; X=H, \quad Y=S P h$

$18 \mathrm{Y}=\mathrm{Me}$
$19 \mathrm{Y}=\mathrm{Ph}$

$20 \mathrm{Y}=\mathrm{H}$
$21 \mathrm{Y}=\mathrm{SPh}$
$22 \mathrm{Y}=\mathrm{Me}$
$23 \mathrm{Y}=\mathrm{Ph}$

In order to study further the effect of the substituent on the regiochemistry, several radical precursors 17 c e were synthesized and subjected to the cyclisation conditions. The results are summarised in Table 1. Unfortunately, no simple relationship between the structure and regiochemistry was found, but our observations seem to suggest that the exclusive formation of compounds 11 and 21 is rather exceptional. The electronic and steric structures of the initially formed carbamoylmethyl radicals are likely responsible for the observed selectivity. Further experiments, including the evaluation of the possible role of the heteroatom on the radical centre, would appear to be desirable.

Experimental

IR spectra were recorded with a JASCO-IR-A-100 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were determined with a JEOL JNM-PMX $60(60 \mathrm{MHz})$ or a Varian XL-300 (300 MHz) spectrometer, and ${ }^{13} \mathrm{C}$ NMR spectra with a Varian XL-300 (75 MHz), for solutions in CDCl_{3}, and δ-values quoted are relative to tetramethylsilane. Exact mass (MS) determinations were obtained on a Hitachi M-80 instrument operating at 20 eV . GLC was carried out on a Shimadzu GC-14A gas chromatograph (helium carrier gas; capillary column at $220^{\circ} \mathrm{C}$). Chromatographic separation was performed with silica gel $60 \mathrm{PF}_{254}$ (Merck) under pressure. Light petroleum refers to the fraction boiling in the range $40-60^{\circ} \mathrm{C}$ except where stated otherwise.

Materials.- N-Methyl- o-(prop-1-enyl)aniline 1b, ${ }^{11} o$-(prop1 -enyl)aniline $1 \mathrm{c},{ }^{12}$ methyl 3-(o-aminophenyl)propenoate $\mathbf{1 d},{ }^{13}$

N -methyl-o-(1-methylethenyl)aniline 1e, ${ }^{14} o$-(1-methylethenyl)aniline 1f, ${ }^{15} \quad o$-(1-phenylethenyl)aniline $1 \mathrm{~h},{ }^{16} \mathrm{~N}$-methyl- o-(1phenylethenyl)aniline $\mathbf{1 g}$, ${ }^{6}$ and N-methyl- o-(prop-2-enyl)aniline 16^{17} were prepared according to the reported procedure.
o-Ethenyl- N -methylaniline $1 \mathbf{1 a}$.-To a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(16.7 \mathrm{~g})$ and $2-[o-($ aminophenyl $)]$ ethanol ${ }^{18}(3.68 \mathrm{~g}, 26.8 \mathrm{mmol})$ in acetone $\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise ethyl chloroformate $(8.73 \mathrm{~g}, 80.5 \mathrm{mmol})$ and the mixture was refluxed for 2 h . After cooling, the inorganic material was removed by filtration and the filtrate was concentrated to give $2-[o$-(ethoxycarbonylamino) phenyl]ethyl ethyl carbonate ($7.35 \mathrm{~g}, 97 \%$) as a crude oil, which was used for the next stage without further purification.

A solution of the carbonate ($7.35 \mathrm{~g}, 26.1 \mathrm{mmol}$) in anhydrous diethyl ether ($5 \mathrm{~cm}^{3}$) was added dropwise to a suspension of lithium aluminium hydride ($2.04 \mathrm{~g}, 53.7 \mathrm{mmol}$) in anhydrous diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was refluxed for 1 h. Usual work-up gave $2-[o-(N$-methylamino $)$ phenyl $]$ ethanol ${ }^{19}$ (4.06 g , quant.) as an oil.

By essentially the same procedure as that of Sabetay et al., ${ }^{18}$ $\mathrm{KOH}(c a .5 .0 \mathrm{~g})$ was added to the aforementioned aminophenylethanol ($3.90 \mathrm{~g}, 26.0 \mathrm{mmol}$) and the mixture was heated at $80-90^{\circ} \mathrm{C}$ (bath temperature) for 10 min at 5 mmHg . Hydroquinone (50 mg) was added and the mixture was distilled to give the aniline $1 \mathrm{la}\left(1.84 \mathrm{~g}, 62 \%\right.$), b.p. $59-61^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$ (lit., ${ }^{20} 108^{\circ} \mathrm{C} / 14 \mathrm{mmHg}$).

General Procedure for the Preparation of 2,2-Dichloro-N-[o-(alk-1-enyl)phenyl]acetamides $\mathbf{2 a} \mathbf{- h}$.-A solution of dichloroacetyl chloride ($1.58 \mathrm{~g}, 10.7 \mathrm{mmol}$) in diethyl ether ($5 \mathrm{~cm}^{3}$) was added dropwise to a solution of the aniline $1(9.76 \mathrm{mmol})$ and triethylamine ($1.09 \mathrm{~g}, 10.7 \mathrm{mmol}$) in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 10 min and diluted with water. The organic layer was separated, washed successively with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (7:1)] to give the acetanilide. The following compounds were thus obtained.

2,2-Dichloro- N -(o-ethenylphenyl)- N -methylacetamide 2a (96%), an oil (Found: C, $53.9 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.75 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 54.1 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.7 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1700 ; \delta 3.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 5.41 (1 H , dd, $J 11.5$ and 2 Hz , one of $\mathrm{CH}=\mathrm{CH}_{2}$), $5.76\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right), 5.82(1 \mathrm{H}, \mathrm{dd}, J 17.5$ and 2 Hz , one of $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.69\left(1 \mathrm{H}, \mathrm{dd}, J 17.5\right.$ and $\left.11 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 7.0-7.85 (4 H, m, ArH).
(Z)- and (E)-2,2-Dichloro-N-methyl- N -[o-(prop-1-enyl)phenyl] acetamide 2b $(55 \%$), an oil (Found: C, $55.6 ; \mathrm{H}, 5.1 ; \mathrm{N}$, 5.4. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 55.8 ; \mathrm{H}, 5.1 ; \mathrm{N}, 5.4 \%$).
(Z)- and (E)-2,2-Dichloro-N-[o-(prop-1-enyl)phenyl]acetamide 2c $(59 \%$) (Found: $\mathrm{C}, 54.0 ; \mathrm{H}, 4.6 ; \mathrm{N}, 5.9$. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 54.1 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.7 \%$; m.p. 144.5$146.0^{\circ} \mathrm{C}$ (from hexane-AcOEt).
(E)-Methyl 3-[o-(2,2-Dichloroacetamido)phenyl]propenoate 2d (quant.) (Found: $\mathrm{C}, 50.0 ; \mathrm{H}, 3.8 ; \mathrm{N}, 4.95 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ requires $\mathrm{C}, 50.0 ; \mathrm{H}, 3.85 ; \mathrm{N}, 4.9 \%$); m.p. $137.5-138.5^{\circ} \mathrm{C}$ [from THF-light petroleum].

2,2-Dichloro- N -methyl- $\mathrm{N}-[\mathrm{o}-(1-$ methylethenyl)phenyl]-
acetamide 2e (82\%) (Found: C, $55.8 ; \mathrm{H}, 5.1: \mathrm{N}, 5.5$. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 55.8 ; \mathrm{H}, 5.1 ; \mathrm{N}, 5.4 \%$); m.p. $57.5-$ $58.5^{\circ} \mathrm{C}$ (from hexane).

2,2-Dichloro- N -[o-(1-methylethenyl)phenyl]acetamide $\quad \mathbf{~ f}$ (98%) (Found: C, $54.1 ; \mathrm{H}, 4.8 ; \mathrm{N}, 5.6 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}$ requires C , $54.1 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.7 \%$); m.p. $43.5-44^{\circ} \mathrm{C}$ (from hexane).

2,2-Dichloro- N -methyl- N -[o-(1-phenylethenyl)phenyl]acetamide $2 \mathrm{~g}(47 \%)$ (Found: $\mathrm{C}, 63.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 4.3$. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 63.8 ; \mathrm{H}, 4.7 ; \mathrm{N}, 4.4 \%$); m.p. $114.5-$ $115.5^{\circ} \mathrm{C}$ (from hexane).

2,2-Dichloro- N -[o-(1-phenylethenyl)phenyl]acetamide $\quad \mathbf{2 h}$
(91%) (Found: C, 62.5 ; $\mathrm{H}, 4.2$; $\mathrm{N}, 4.7 . \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$ requires C , $62.8 ; \mathrm{H}, 4.3 ; \mathrm{N}, 4.6 \%$); m.p. $84-85^{\circ} \mathrm{C}$ [from light petroleum].

N -(o-Ethenylphenyl)- N -methyl-2,2-bis(phenylthio)acetamide 3.-Benzenethiol ($596 \mathrm{mg}, 5.41 \mathrm{mmol}$) was added to a solution of sodium ethoxide in ethanol [prepared from sodium (124 mg , $5.41 \mathrm{mmol})$ and ethanol $\left.\left(15 \mathrm{~cm}^{3}\right)\right]$, and the mixture was stirred at room temperature for 10 min . A solution of the dichloride $\mathbf{2 a}$ ($600 \mathrm{mg}, 2.45 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$) was added to the above solution and the mixture was stirred at room temperature for 16 h . After removal of the solvent, the residue was dissolved in water, and extracted with dichloromethane. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (7:1)] to give the acetamide 3 ($518 \mathrm{mg}, 54 \%$) (Found: C, $70.4 ; \mathrm{H}, 5.4 ; \mathrm{N}$, $3.4, \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NOS}_{2}$ requires $\mathrm{C}, 70.55$; $\mathrm{H}, 5,4 ; \mathrm{N}, 3.6 \%$); m.p. 91.5$92.5^{\circ} \mathrm{C}$ (from hexane-AcOEt); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1665 ; \delta 3.16$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.67\left[1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{SPh})_{2}\right], 5.22(1 \mathrm{H}, \mathrm{dd}, J 11$ and 2 Hz , one of $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.64,(1 \mathrm{H}$, dd, $J 18$ and 2 Hz , one of $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $6.3-7.7\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ and ArH$)$.

2-Chloro-N-methyl-N-[o-(1-methylethenyl)phenyl]-2-
(methylthio)acetamide 4.-Using a procedure similar to that described for the preparation of compounds $\mathbf{2 a - h}$, the aniline $\mathbf{1 e}$ $(1.50 \mathrm{~g}, 10.2 \mathrm{mmol})$ was treated with (methylthio)acetyl chloride $(1.40 \mathrm{~g}, 11.2 \mathrm{mmol})$ and work-up gave N -methyl- N -[o-(1-methylethenyl)phenyl]-2-(methylthio)acetamide ($1.22 \mathrm{~g}, 51 \%$) (Found: C, 66.0; H, 7.5; N, 5.5. $\mathrm{C}_{13} \mathrm{H}_{17}$ NOS requires $\mathrm{C}, 66.35$; $\mathrm{H}, 7.3 ; \mathrm{N}, 5.95 \%$; m.p. $54.5-56^{\circ} \mathrm{C}$ [from hexane-light petroleum].
N-Chlorosuccinimide ($187 \mathrm{mg}, 1.40 \mathrm{mmol}$) was added by portions to a solution of the sulphide obtained above (300 mg , 1.27 mmol) in tetrachloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 4 h . The precipitated succinimide was filtered off and the filtrate was concentrated to give the title acetamide 4 in quantitative yield, which was used immediately in the next stage.

N-Methyl-N-[o-(1-methylethenyl)phenyl]-2,2-bis(phenylthio)acetamide 5.-Using a procedure similar to that described for the preparation for compound 3 , the acetamide $5(462 \mathrm{mg}$, 37%) was obtained from the dichloride $\mathbf{2 e}(800 \mathrm{mg}, 3.1 \mathrm{mmol})$ and sodium benzenethiolate (6.8 mmol) (Found: C, $71.1 ; \mathrm{H}$, $5.85 ; \mathrm{N}, 3.6 . \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NOS}_{2}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 5.7 ; \mathrm{N}, 3.45 \%$); m.p. $75.5-77^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665 ; \delta 1.99$ (3 H , br s, CMe), $3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}\right.$), 4.8-5.2 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}$), $4.88\left[1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{SPh})_{2}\right]$ and $6.75-7.4(14 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

2-Chloro- N -methyl- N -[o-(1-methylethenyl)phenyl]-

 acetamide 6.-Using a procedure similar to that described for the preparation of compound $\mathbf{2 e}$, the acetamide $6(1.27 \mathrm{~g}, 80 \%)$ was obtained from the aniline $1 \mathbf{e}(1.0 \mathrm{~g}, 6.80 \mathrm{mmol})$ and chloroacetyl chloride ($845 \mathrm{mg}, 7.48 \mathrm{mmol}$) as an oil (Found: C, 64.3; $\mathrm{H}, 6.5 ; \mathrm{N}, 6.2 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 6.3 ; \mathrm{N}$, 6.3%); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1680 ; \delta 2.03(3 \mathrm{H}$, br s, CMe), $3.22(3 \mathrm{H}$, s , NMe$), 3.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{Cl}\right), 4.95-5.1(1 \mathrm{H}, \mathrm{m}$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.15-5.3\left(1 \mathrm{H}, \mathrm{m}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right)$ and $7.1-7.6(4 \mathrm{H}, \mathrm{m}$, ArH).Radical Cyclisation of the Dichloroacetamide 2a. General Procedure A.-A solution of $\mathrm{Bu}_{3} \mathrm{SnH}(525 \mathrm{mg}, 1.80 \mathrm{mmol})$ and AIBN ($27 \mathrm{mg}, 0.16 \mathrm{mmol}$) in dry toluene ($40 \mathrm{~cm}^{3}$) was added dropwise to a boiling solution of the acetamide $\mathbf{2 a}(400 \mathrm{mg}, 1.63$ mmol) in dry toluene ($20 \mathrm{~cm}^{3}$) via a syringe during 40 min and the mixture was refluxed for a further 1 h . Then a further solution of $\mathrm{Bu}_{3} \mathrm{SnH}(525 \mathrm{mg}, 1.80 \mathrm{mmol})$ and AIBN (27 mg , 0.16 mmol) in toluene $\left(5 \mathrm{~cm}^{3}\right)$ was added to this mixture, and the whole was refluxed for 2 h . After the solvent had been
evaporated off, the residue was dissolved in diethyl ether (20 cm^{3}), 8% aq. KF ($20 \mathrm{~cm}^{3}$) was added, and the mixture was stirred at room temperature for 1 h . The organic layer was separated and the aq. layer was extracted with diethyl ether. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (9:2)] to give 3,4-dihydro-1,4-dimethyl-quinolin- $2\left(1 \mathrm{H}\right.$)-one $7 \mathbf{7 a}\left(139 \mathrm{mg}, 49 \%\right.$) as an oil ${ }^{3}$ (Found: \mathbf{M}^{+}, 175.0993. Calc. for $\left.\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}: \mathrm{M}, 175.0996\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1680; $\delta 1.25(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, 4-\mathrm{Me}), 2.1-3.4\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and 4-H), 3.33 ($3 \mathrm{H}, \mathrm{s}$, NMe) and 6.8-7.4 (4 H, m, ArH).

Radical Cyclisation of the Bis(phenylthio)acetamide 3.Following general procedure A , the bis(phenylthio)acetamide 3 $(400 \mathrm{mg}, 1.02 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(327 \mathrm{mg}, 1.12$ mmol) and AIBN ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$) in refluxing toluene for 5 h . Since TLC analysis of the reaction mixture showed that considerable amounts of the starting material still remained, a further solution of $\mathrm{Bu}_{3} \mathrm{SnH}(327 \mathrm{mg})$ and AIBN (17 mg) in toluene ($10 \mathrm{~cm}^{3}$) was added dropwise during 15 min and the mixture was refluxed for 2 h . Work-up gave the quinolinone 7 a $(91 \mathrm{mg}, 50 \%$) as an oil.

Radical Cyclisation of the Dichloroacetamide 2b.-Following general procedure A, the acetamide $\mathbf{2 b}(260 \mathrm{mg}, 1.00 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(322 \mathrm{mg}, 1.1 \mathrm{mmol})$ and $\operatorname{AIBN}(16 \mathrm{mg}, 0.1$ mmol) twice and work-up gave 4-ethyl-3,4-dihydro-1-methyl-quinolin- $2\left(1 \mathrm{H}\right.$)-one $\mathbf{7 b}$ (195 mg , quant.) as an oil (Found: \mathbf{M}^{+}, 189.1160. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ requires $\left.\mathrm{M}, 189.1153\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1680; $\delta 0.91\left(3 \mathrm{H}\right.$, br t, $\left.J 7 \mathrm{~Hz}, \mathrm{CH}_{2} M e\right), 1.2-3.0(5 \mathrm{H}$, br m, $3-\mathrm{H}_{2}, 4-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $6.75-7.4(4 \mathrm{H}$, m, ArH).

Radical Cyclisation of the Dichloroacetamide 2c.-Following general procedure A, the acetamide $\mathbf{2 c}(180 \mathrm{mg}, 0.73 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(236 \mathrm{mg}, 0.81 \mathrm{mmol})$ and AIBN (12 mg , 0.07 mmol) twice and work-up gave 4-ethyl-3,4-dihydroquinolin$2(1 \mathrm{H})$-one $7 \mathrm{c}(102 \mathrm{mg}, 79 \%)$ (Found: $\dot{\mathrm{C}}, 75.3 ; \mathrm{H}, 7.5 ; \mathrm{N}, 8.0$. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}, 7.5$; $\mathrm{N}, 8.0 \%$; m.p. $130.5-$ $132.5^{\circ} \mathrm{C}$ (from hexane-AcOEt); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1680 ; \delta(300$ $\mathrm{MHz}) 0.94\left(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.5-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right)$, $2.57(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $4 \mathrm{~Hz}, 3-\mathrm{H}), 2.77(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $6.5 \mathrm{~Hz}, 3-\mathrm{H}), 2.85(1 \mathrm{H}$, ddd, $J 13.5,6.5$ and $4 \mathrm{~Hz}, 4-\mathrm{H}), 6.82$ $(1 \mathrm{H}, \mathrm{dd}, J 8$ and $1.5 \mathrm{~Hz}, \mathrm{ArH}), 7.01(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1.5 Hz , ArH $), 7.16(1 \mathrm{H}, \mathrm{brd}, J 8 \mathrm{~Hz}, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1.5 $\mathrm{Hz}, \mathrm{ArH}$) and 8.63 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$).

Radical Cyclisation of the Dichloroacetamide 2d.-Following general procedure A, the acetamide $\mathbf{2 d}(250 \mathrm{mg}, 0.86 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(278 \mathrm{mg}, 0.95 \mathrm{mmol})$ and AIBN (14 mg , $0.09 \mathrm{mmol})$ twice and work-up gave methyl (1,2,3,4-tetrahydro-2-oxoquinolin-4-yl)acetate 7d (190 mg, quant.) (Found: C, 65.8; $\mathrm{H}, 6.0 ; \mathrm{N}, 6.4 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $\mathrm{C}, 65.7 ; \mathrm{H}, 6.0 ; \mathrm{N}, 6.4 \%$) m.p. $114-115^{\circ} \mathrm{C}$ (from hexane-AcOEt); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3400 , 1730 and $1680 ; \delta 2.3-3.1\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.25-3.85(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.7-7.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 9.45-9.9 (1 H, br, NH).

Radical Cyclisation of the Dichloroacetamide 2e.-Following general procedure A, the acetamide $\mathbf{2 e}(350 \mathrm{mg}, 1.35 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(434 \mathrm{mg}, 1.49 \mathrm{mmol})$ and AIBN (22 mg , 0.14 mmol) twice to give a mixture of four products, which was chromatographed on silica gel [hexane-AcOEt (7:1)]. The first fraction gave 3,4-dihydro-1,4,4-trimethylquinolin-2(1 H)one $9(61 \mathrm{mg}, 24 \%)$ as an oil; ${ }^{3} v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1680 ; \delta 1.29$ ($6 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}_{2}$), $2.47\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $6.9-$ 7.45 (4 H, m, ArH).

The second fraction gave a mixture of 1,3,4,5-tetrahydro-1,4-
dimethyl- 11 and 1,3,4,5-tetrahydro-1,5-dimethyl-2H-1-benz-azepin-2-one $10(25 \mathrm{mg}, 10 \% ; 1: 2)$ and the third fraction afforded 1,5-dihydro-1,4-dimethy-2H-1-benzazepin-2-one 8 (171 $\mathrm{mg}, 68 \%$) (Found: C, 76.8; H, 7.05; N, 7.8. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}$ requires $\mathrm{C}, 77.0 ; \mathrm{H}, 7.0 ; \mathrm{N}, 7.5 \%$); m.p. $96-97^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665$ and $1630 ; \delta 1.97(3 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, 4-\mathrm{Me})$, $3.23\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{H}_{2}\right), 3.49(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 5.6-5.7(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $7.1-7.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta(75 \mathrm{MHz}) 167.5,152.9,141.8,135.5$, 127.4, 127.2, 125.2, 121.7, 120.0, 38.0, 36.7 and 24.4. Compounds 10^{6} and 11 were identified by comparison of the ${ }^{1} \mathrm{H}$ NIMR spectrum of the mixture and the GLC retention time with those of each authentic sample (for the preparation of authentic compound 11, see below).

Catalytic Reduction of the Benzazepin-2-one 8.-A solution of compound $8(50 \mathrm{mg}, 0.26 \mathrm{mmol})$ in methanol ($10 \mathrm{~cm}^{3}$) was hydrogenated in the presence of $10 \% \mathrm{Pd}-\mathrm{C}(50 \mathrm{mg})$ under pressure ($4 \mathrm{~kg} / \mathrm{cm}^{2}$) for 40 h . After the catalyst had been removed by filtration, the filtrate was concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (7:1)] to give the unchanged starting material 8 (6 mg recovery) and 1,3,4,5-tetrahydro-1,4-dimethyl-2H-1-benzazepin-2-one 11 (35 $\mathrm{mg}, 69 \%$) as an oil (Found: $\mathrm{M}^{+}, 189.1158 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ requires M, 189.1153); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665 ; \delta 1.04(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}$, $4-\mathrm{Me}), 1.7-3.1\left(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $7.0-7.5(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Radical Cyclisation of the Dichloroacetamide 2f.-Following general procedure A, the acetamide $\mathbf{2 f}(400 \mathrm{mg}, 1.63 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(525 \mathrm{mg}, 1.80 \mathrm{mmol})$ and AIBN (27 mg , 0.16 mmol) twice to give 1,5-dihydro-4-methyl-2H-1-benzazepin-2-one 12 ($124 \mathrm{mg}, 44 \%$) (Found: C, $76.3 ; \mathrm{H}, 6.4 ; \mathrm{N}, 8.1$. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}$ requires $\mathrm{C}, 76.3 ; \mathrm{H}, 6.4 ; \mathrm{N}, 8.1 \%$; m.p. $158.5-$ $160.5^{\circ} \mathrm{C}$ (from hexane-AcOEt); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1675 ; \delta 2.01$ ($3 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, 4-\mathrm{Me}$), $3.28\left(2 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{2}\right), 5.6-5.8(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, 6.85-7.35 (4 H, m, ArH) and 8.9-9.3 (1 H, m, NH). Other minor products were not characterised.

Radical Cyclisation of the 2-Chloro-2-(methylthio)acetamide 4. General Procedure B.-A solution of $\mathrm{Bu}_{3} \mathrm{SnH}(407 \mathrm{mg}, 1.40$ mmol) and AIBN ($21 \mathrm{mg}, 0.13 \mathrm{mmol}$) in dry toluene ($40 \mathrm{~cm}^{3}$) was added dropwise to a boiling solution of the acetamide 4 ($345 \mathrm{mg}, 1.27 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$) during 1 h and the mixture was then refluxed for 9 h . After work-up as described in procedure A, the crude material was chromatographed on silica gel [hexane-AcOEt (15:1)]. The first fraction gave 3,4-dihydro-1,4,4-trimethyl-3-methylthioquinolin-2(1H)-one 13 (81 $\mathrm{mg}, 27 \%$) (Found: C, 66.1; H, 7.3; N, 6.1. $\mathrm{C}_{13} \mathrm{H}_{17}$ NOS requires $\mathrm{C}, 66.35 ; \mathrm{H}, 7.3 ; \mathrm{N}, 5.95 \%$); m.p. $77.5-79{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1670 ; \delta 1.25$ and $1.53\left(3 \mathrm{H}\right.$ each, both s, $\left.4-\mathrm{Me}_{2}\right)$, $2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 3.19(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and 6.8-7.4 (4 H, m, ArH).

The second fraction gave the 1-benzazepinone $\mathbf{8}(113 \mathrm{mg}$, 48%).

Radical Cyclisation of the Bis(phenylthio)acetamide 5.Following procedure B , the acetamide $5(400 \mathrm{mg}, 0.99 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(316 \mathrm{mg}, 1.08 \mathrm{mmol})$ and AIBN (16 $\mathrm{mg}, 0.1 \mathrm{mmol}$) to give the 1 -benzazepin-2-one 8 ($83 \mathrm{mg}, 45 \%$). Other minor products were not characterised.

Radical Cyclisation of the Chloroacetamide 6.-Following procedure B, the acetamide $6(400 \mathrm{mg}, 1.71 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(797 \mathrm{mg}, 2.74 \mathrm{mmol})$ and AIBN ($42 \mathrm{mg}, 0.26$ $\mathrm{mmol})$ and work-up gave the quinolinone $9(60 \mathrm{mg}, 19 \%)$ and a mixture of the benzazepinones 10 and $11(1: 1 ; 78 \mathrm{mg}, 24 \%)$.

Radical Cyclisation of the Dichloroacetamide $\mathbf{2 g}$.-Following
procedure A , the acetamide $\mathbf{2 g}(400 \mathrm{mg}, 1.25 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(400 \mathrm{mg}, 1.38 \mathrm{mmol})$ and AIBN ($21 \mathrm{mg}, 0.1 \mathrm{mmol}$) twice and work-up gave 1,3,4,5-tetrahydro-1-methyl-5-phenyl2 H -1-benzazepin-2-one 14 a ($275 \mathrm{mg}, 88 \%$), m.p. $102-103.5^{\circ} \mathrm{C}$ (from hexane) (lit., $\left.{ }^{8} 102-104{ }^{\circ} \mathrm{C}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665 ; \delta 2.3-$ $2.6\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}_{2}\right), 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.0-4.45(1 \mathrm{H}, \mathrm{m}$, 5-H) and 6.55-7.7 (9 H, m, ArH).

Radical Cyclisation of the Dichloroacetamide $\mathbf{2 h}$.-Following procedure A, the acetamide $\mathbf{2 h}(350 \mathrm{mg}, 1.14 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(366 \mathrm{mg}, 1.25 \mathrm{mmol})$ and AIBN ($18 \mathrm{mg}, 0.11$ mmol) twice. After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (7:1)]. The first fraction gave o-(1-phenylethenyl)acetanilide $15(88 \mathrm{mg}, 33 \%)$, m.p. $123-125^{\circ} \mathrm{C}$ [from acetonitrile-light petroleum (b.p. range $80-110{ }^{\circ} \mathrm{C}$)] (lit., ${ }^{16} 122^{\circ} \mathrm{C}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3410(\mathrm{NH})$ and 1690; $\delta 1.75(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 5.30\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right)$, $5.79\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}\right.$, one of $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 6.75-7.7(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.9-8.2 (1 H, m, NH).

The second fraction gave 1,3,4,5-tetrahydro-5-phenyl-2H-1-benzazepin-2-one 14b ($115 \mathrm{mg}, 43 \%$), m.p. $183-184{ }^{\circ} \mathrm{C}$ (from acetonitrile-hexane) (lit., $\left.{ }^{9} 180-182{ }^{\circ} \mathrm{C}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3390$ (NH) and $1670 ; \delta 2.1-2.8\left(4 \mathrm{H}, \mathrm{m}, 3-\right.$ and $\left.4-\mathrm{H}_{2}\right), 3.95-4.6(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 6.6-7.6(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.1-8.35(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$.

2,2-Dichloro-N-methyl- N -[o-(prop-2-enyl)phenyl]acetamide 17a.-To a solution of the aniline $16(2.0 \mathrm{~g}, 13.6 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added dichloroacetic acid (1.93 $\mathrm{g}, 14.9 \mathrm{mmol}$) and then a solution of dicyclohexylcarbodiimide (DCC) $(3.07 \mathrm{~g}, 14.9 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ at room temperature, and the mixture was stirred at the same temperature for 16 h . The precipitated dicyclohexylurea was filtered off and the filtrate was washed with saturated aq. NaHCO 3 , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (20:1)] to give the amide $17 \mathrm{a}(1.43 \mathrm{~g}, 41 \%$) as an oil (Found: C, $55.5 ; \mathrm{H}, 5.1 ; \mathrm{N}$, 5.55. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 55.8 ; \mathrm{H}, 5.1 ; \mathrm{N}, 5.4 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1695 ; \delta 3.2-3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.25(3$ $\mathrm{H}, \mathrm{s}, \mathrm{NMe})$, 4.85-5.35 (2 H, m. $\mathrm{CH}=\mathrm{CH}_{2}$), $5.55-6.3(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.72\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right)$ and $7.1-7.5(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

N -Methyl-2,2-bis(phenylthio)- N -[o-(prop-2-enyl)phenyl]acetamide $\mathbf{1 7 b}$.-Using a procedure similar to that described for the preparation of compound $\mathbf{1 7 a}$, the aniline $16(723 \mathrm{mg}, 4.91$ mmol) was treated with bis(phenylthio)acetic acid ($1.36 \mathrm{~g}, 4.91$ mmol) and DCC ($1.12 \mathrm{~g}, 5.40 \mathrm{mmol}$) in dichloromethane (5 cm^{3}) at room temperature overnight, and work-up gave the amide $\mathbf{1 7 b}(572 \mathrm{mg}, 29 \%$) as an oil (Found: C, $70.8 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.4$. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NOS}_{2}$ requires $\left.\mathrm{C}, 71.1 ; \mathrm{H}, 5.7 ; \mathrm{N}, 3.45 \%\right) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1665; $\delta 3.0-3.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.17(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.7-$ $5.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.71\left[1 \mathrm{H}, \mathrm{s}, \mathrm{CH}(\mathrm{SPh})_{2}\right], 5.55-6.2(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $6.6-7.6(14 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

2-Chloro- N -methyl- N -[o-(prop-2-enyl) phenyl] acetamide

 17c.-Using a procedure similar to that described for the preparation of compound 17 a , the aniline $16(1.83 \mathrm{~g}, 12.4 \mathrm{mmol})$ was treated with chloroacetic acid $(1.29 \mathrm{~g}, 13.7 \mathrm{mmol})$ and DCC $(2.82 \mathrm{~g}, 13.7 \mathrm{mmol})$ in dichloromethane $\left(40 \mathrm{~cm}^{3}\right)$, and work-up gave the amide $17 \mathrm{c}(1.32 \mathrm{~g}, 48 \%$) as an oil (Found: C, 64.6; H, 6.8; $\mathrm{N}, 6.6 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 6.3 ; \mathrm{N}, 6.3 \%$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1675 ; \delta 3.2-3.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.22$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $3.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right), 4.8-5.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.6-6.3 (1 H, m, CH=CH2 $)$ and 7.0-7.5 (4 H, m, ArH).2-Chloro- N -methyl- N -[o-(prop-2-enyl)phenyl]propionamide 17d.-To a solution of the aniline $16(500 \mathrm{mg}, 3.40 \mathrm{mmol})$ pyridine ($857 \mathrm{mg}, 10.8 \mathrm{mmol}$), and 4 -(dimethylamino) pyridine (DMAP) ($42 \mathrm{mg}, 0.34 \mathrm{mmol}$) in toluene $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was
added a solution of 2-chloropropionyl chloride ($474 \mathrm{mg}, 3.74$ mmol) in toluene ($5 \mathrm{~cm}^{3}$) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The organic layer was washed with saturated aq. $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt ($9: 2$)] to give the amide 17 d ($324 \mathrm{mg}, 40 \%$) as an oil (Found: M^{+}, 237.0947. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClNO}$ requires $\mathrm{M}, 237.0920$); $\mathrm{v}_{\max }\left(\mathrm{CCl}_{4}\right)$ / $\mathrm{cm}^{-1} 1675 ; \delta 1.56(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{CMe}), 3.1-3.5(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.23(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.02$ and 4.24 (total 1 H , both q, $J 7.0 \mathrm{~Hz}, \mathrm{COCH}), 4.8-5.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.5-6.4$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$) and 6.9-7.5 (4 H, m, ArH).

2-Chloro-N-methyl-2-phenyl- $\mathrm{N}-[\mathrm{o}-$ (prop-2-enyl) phenyl]acetamide 17e.-Using a procedure similar to that described for the preparation of compound $\mathbf{1 7 d}$, the aniline $16(600 \mathrm{mg}, 4.08$ mmol) was treated with 2-chloro-2-phenylacetyl chloride (847 $\mathrm{mg}, 4.48 \mathrm{mmol}$), pyridine ($1.03 \mathrm{~g}, 13.0 \mathrm{mmol}$) and DMAP (50 $\mathrm{mg}, 0.41 \mathrm{mmol}$) in toluene ($30 \mathrm{~cm}^{3}$), and work-up gave the amide 17e ($492 \mathrm{mg}, 40 \%$) (Found: C, 72.2; H, 6.4; N, 5.0. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}$ requires $\mathrm{C}, 72.1 ; \mathrm{H}, 6.05 ; \mathrm{N}, 4.7 \%$); m.p. $46.5-48.5^{\circ} \mathrm{C}$ (from hexane-AcOEt); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1680 ; \delta 2.55-2.85$ and $3.3-3.55$ (total 2 H , both m, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.19(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 4.6-6.3 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.09 and 5.21 (total 1 H , both s, COCH) and $6.5-7.5(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Radical Cyclisation of the Dichloroacetamide 17a.-Following procedure A, the acetamide $17 \mathrm{a}(410 \mathrm{mg}, 1.59 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(508 \mathrm{mg}, 1.75 \mathrm{mmol})$ and AIBN $(26 \mathrm{mg}$, 0.18 mmol) twice and work-up gave the 2 H -1-benzazepin-2-one 11 ($131 \mathrm{mg}, 48 \%$) as an oil, along with two unidentified, oily products (67 mg and 10 mg).

Radical Cyclisation of the Bis(phenylthio)acetamide 17b.Following procedure B, the acetamide $17 \mathrm{~b}(316 \mathrm{mg}, 0.78 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(249 \mathrm{mg}, 0.857 \mathrm{mmol})$ and AIBN (13 $\mathrm{mg}, 0.08 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave the unchanged starting material $17 b(80 \mathrm{mg}$, 25% recovery). The second fraction gave N-methyl-2-phenylthioN -[o-(prop-2-enyl)phenyl] acetamide $\mathbf{1 7 f}(22 \mathrm{mg}, 9 \%)$ (Found: C, 72.4; H, 6.6; N, 4.6. $\mathrm{C}_{18} \mathrm{H}_{19}$ NOS requires C, 72.7; H, 6.4; N, 4.7%); m.p. $43-45^{\circ} \mathrm{C}$ (from hexane-AcOEt); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $1665 ; \delta 3.19(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.2-3.6\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.39$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{C}_{2} \mathrm{SPh}$), 4.8-5.3 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.5-6.3(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $6.8-7.8(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

The third fraction gave 3,4,5,6-tetrahydro-1-methyl-3-phenyl-thio-1-benzazocin- $2(1 \mathrm{H}$)-one 21 ($102 \mathrm{mg}, 47 \%$) (Found: C, 72.7; $\mathrm{H}, 6.6$; $\mathrm{N}, 4.8 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NOS}$ requires $\mathrm{C}, 72.7 ; \mathrm{H}, 6.4 ; \mathrm{N}$, 4.7%); m.p. $127.5-129.5^{\circ} \mathrm{C}$ (from hexane-AcOEt); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right)$ / cm^{-1} 1665; $\delta 1.9-3.0\left(6 \mathrm{H}, \mathrm{m}, 4-\right.$, 5 - and $\left.6-\mathrm{H}_{2}\right), 3.27(3 \mathrm{H}, \mathrm{s}$, NMe), $3.79(1 \mathrm{H}, \mathrm{dd}, J 9$ and $4 \mathrm{~Hz}, 3-\mathrm{H})$ and $7.0-7.4(9 \mathrm{H}, \mathrm{m}$, ArH).

Desulphurisation of Compound 21.-A suspension of the sulphide $21(49 \mathrm{mg}, 0.16 \mathrm{mmol})$ and Raney nickel ($c a .1 \mathrm{~g}$) in ethanol ($5 \mathrm{~cm}^{3}$) was refluxed for 2 h . After the catalyst had been removed by filtration, the filtrate was concentrated and the residue was chromatographed on silica gel [hexaneAcOEt (5:1)] to give 3,4,5,6-tetrahydro-1-methyl-1-benzazocin- $2\left(1 \mathrm{H}\right.$)-one 20 ($27 \mathrm{mg}, 89 \%$), m.p. $58.5-59.5^{\circ} \mathrm{C}$ (from light petroleum) (lit., ${ }^{10} 60-61.5^{\circ} \mathrm{C}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1630; $\delta 1.1-3.0(8 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and 7.0-7.4 (4 H , m, ArH).

Radical Cyclisation of the Chloroacetamide 17c.-Following procedure B, the acetamide $17 \mathrm{c}(300 \mathrm{mg}, 1.34 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(429 \mathrm{mg}, 1.47 \mathrm{mmol})$ and AIBN ($22 \mathrm{mg}, 0.13$ mmol) and the crude material was chromatographed on silica
gel [hexane-AcOEt (9:2)]. The first fraction gave an unidentified, oily product (15 mg), the second fraction gave the 2 H -1-benzazepinone 11 ($96 \mathrm{mg}, 38 \%$) and the third fraction afforded the 1-benzazocin-2($1 H$)-one 20 ($112 \mathrm{mg}, 44 \%$).

Radical Cyclisation of the Chloropropionamide 17d.-Following procedure B, the acetamide $\mathbf{1 7 d}(250 \mathrm{mg}, 1.05 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(337 \mathrm{mg}, 1.16 \mathrm{mmol})$ and AIBN (17 mg , 0.11 mmol). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (15:1)]. The first fraction gave 1,3,4,5-tetrahydro-1,3,4-trimethyl-2H-1-benzazepin-2-one $18(123 \mathrm{mg}, 58 \%$ as a stereoisomeric mixture in the ratio $68: 32$, determined by $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy) as an oil (Found: M^{+}, 203.1298. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ requires M, 203.1308); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665 ; \delta 0.9-1.2(6 \mathrm{H}, \mathrm{m}), 1.7-3.2(4 \mathrm{H}, \mathrm{m}), 3.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$) and 6.9-7.4 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The second fraction gave 3,4,5,6-tetrahydro-1,3-dimethyl-1-benzazocin- $2(1 \mathrm{H})$-one $22\left(78 \mathrm{mg}, 36 \%\right.$) as an oil (Found: M^{+}, 203.1288. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{M}, 203.1308$); $\mathrm{v}_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1665 ; $\delta 1.04$ ($3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 3-\mathrm{Me}$), $1.4-2.9(7 \mathrm{H}, \mathrm{m}), 3.27(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe})$ and 7.0-7.4 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Radical Cyclisation of the Chloro(phenyl)acetamide 17e.Following procedure B , the acetamide $17 \mathrm{e}(350 \mathrm{mg}, 1.16 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(374 \mathrm{mg}, 1.28 \mathrm{mmol})$ and AIBN (19 $\mathrm{mg}, 0.12 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave one of the diastereoisomeric isomers of $1,3,4,5$ -tetrahydro-1,4-dimethyl-3-phenyl-2H-1-benzazepin-2-one 19 (48 $\mathrm{mg}, 16 \%$) (Found: C, $81.5 ; \mathrm{H}, 7.55 ; \mathrm{N}, 5.5 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires C, $81.5 ; \mathrm{H}, 7.2 ; \mathrm{N}, 5.3 \%$); m.p. $121-122.5^{\circ} \mathrm{C}$ (from hexane); $\mathrm{v}_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1670 ; \delta 1.05(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 4-\mathrm{Me}), 2.1-3.1$ ($3 \mathrm{H}, \mathrm{m}$), 3.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.75-3.9 ($1 \mathrm{H}, \mathrm{m}$) and 6.9-7.6 (9 H , m, ArH).
The second fraction gave another isomer of compound 19 (21 $\mathrm{mg}, 7 \%$) as an oil (Found: $\mathrm{M}^{+}, 265.1440 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires M, 265.1465); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1670 ; \delta 0.76(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}$, 4-Me), 2.3-3.5 ($4 \mathrm{H}, \mathrm{m}$), $3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $6.9-7.5(9 \mathrm{H}$, m, ArH).

The third fraction gave 3,4,5,6-tetrahydro-1-methyl-3-phenyl-1-benzazocin- $2(1 \mathrm{H}$)-one 23 ($196 \mathrm{mg}, 63 \%$) (Found: C, 81.3; $\mathrm{H}, 7.6 ; \mathrm{N}, 5.6 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires C, 81.5; H, 7.2; N , 5.3%); m.p. $119-120^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665$; $\delta 1.1-3.7(7 \mathrm{H}, \mathrm{m}), 3.27(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and 6.8-7.5 ($9 \mathrm{H}, \mathrm{m}$, ArH).

References

1 T. Sato, Y. Wada, M. Nishimoto, H. Ishibashi and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1989, 879.
2 H. Ishibashi, T. S. So, T. Sato, K. Kuroda and M. Ikeda, J. Chem. Soc., Chem. Commun., 1989, 762.
3 K. Jones, M. Thompson and C. Wright, J. Chem. Soc., Chem. Commun., 1986, 115.
4 G. Stork and R. Mah, Heterocycles, 1989, 28, 723.
5 J. M. Clough, G. Pattenden and P. G. Wright, Tetrahedron Lett., 1989, 30, 7469.
6 T. Sato, T. Ito, H. Ishibashi and M. Ikeda, submitted for publication in Chem. Pharm. Bull.
7 K. A. Parker, D. M. Spero and K. C. Inman, Tetrahedron Lett., 1986, 27, 2833. For other examples of a neophyl rearrangement, see J. A. Franz, R. D. Barrows and D. M. Camaioni, J. Am. Chem. Soc., 1984, 106, 3964.
8 L. I. Barsky and W. L. Bencze, J. Med. Chem., 1971, 14, 40.
9 L. H. Werner, S. Ricca, A. Rossi and G. deStevens, J. Med. Chem., 1967, 10, 575.
10 R. M. Coates and E. F. Johnson, J. Am. Chem. Soc., 1971, 93, 4016.
11 R. Wehrli, H. Heimgartner, H. Schmid and H.-J. Hansen, Helv. Chim. Acta., 1977, 60, 2034.
12 A. Padwa and S. Nahm, J. Org. Chem., 1981, 46, 1402.
13 L. G. Qiang and N. H. Baine, J. Org. Chem., 1988, 53, 4218.

14 S. Rossi and G. Pagani, Ann. Chim. (Rome), 1966, 56, 728.
15 C. M. Atkinson and J. C. E. Simpson, J. Chem. Soc., 1947, 808.
16 R. Stoermer and H. Fincke, Ber. Dtsch, Chem. Ges., 1909, 42, 3115.

17 M. Schmid, H.-J. Hansen and H. Schmid, Helv. Chim. Acta, 1973, 56, 105.

18 S. Sabetay, J. Bleger and M. Y. Lestrange, Bull. Soc. Chim. Fr., 1931, 49, 3.

19 Y. Masuoka, T. Asako, G. Goto and S. Noguchi, Chem. Pharm. Bull., 1986, 34, 140.
20 M. Lancaster and D. J. H. Smith, J. Chem. Soc., Chem. Commun., 1980, 471.

Paper 0/03068F
Received 9th July 1990
Accepted 3rd September 1990

[^0]: $\dagger N$-(o-Isopropenylphenyl)acetamide.
 \ddagger In contrast, the N-(prop-2-ynyl)acetamide counterparts have recently been shown to undergo efficient radical cyclisation to give the fivemembered lactams. ${ }^{5}$

